EFC0412BD
2016/6/22 8:07:20
0 人气:0
- 型号:EFC0412BD
- 数量:2365
- 制造商:上海曦龙电气设备有限公司
- 有效期:2017/6/22 0:00:00
EFC0412BD EFC0412BD EFC0412BD
工业风扇代理销售:
联系人:程经理
手机:139188-64473
手机:139188-64473
QQ:937926739
固话:021-6131-6707
固话:021-6131-8625
“ 就整个机械行业而言,可靠性差仍是较普遍的质量顽疾之一。 ” 王建和表示,与世界先进水平的同类产品相比,产品可靠性差仍是制约我国机械产品 “ 走出去 ” 的关键因素。 “ 可靠性提升牵扯到方方面面,不仅是技术问题,还包括全寿命周期的质量管理。 ” 王建和对记者说, “ 机械制造业应该从 ‘ 四基 ' 入手抓可靠性。每一位员工都要踏实做事、追求卓越、力求精益求精、尽善尽美。 ”
我国逐步进入 “ 大质量 ” 时代新中国成立后,特别是改革开放以来,我国机械工业在自力更生的基础上,积极吸收国外先进的质量管理经验,逐步形成了机械行业特色的质量管理方法。
新中国成立初期,我国处于计划经济时期,质量管理以质量检验为主。改革开放后,机械工业部率先引入发达国家全面质量管理的理念和方法,并将其中的 QC 小组活动与质量信得过班组有机结合起来,形成了机械工业特色的群众性质量管理形式;机械工业从行动实际出发,开展了以稳定、提高产品质量为主要目标的 “ 工艺突破口 ” 工作;以 ISO9000 标准发布为抓手,通过开展质量认证,有效促进了全面质量管理的全面落地。2004 年, GB/T19580 《卓越绩效评价准则》国家标准颁布,全面质量管理的内涵进一步扩大,并逐步进入追求卓越绩效的 “ 大质量 ” 时代。
《规划纲要》指出,重视工艺已成为机械工业企业的优良传统。机械产品生产流程长,制造工艺复杂,特殊过程多,如热处理、焊接、喷涂、装备等,所以对工艺要求高。早在 1986 年,机械工业从行业实际出发,将加强工艺管理、严格工艺纪律的 “ 工艺突破口 ” 作为深入推行全面质量管理的重要抓手,并取得了很好的效果。
(6)故障现象:操作控制面板PMU液晶显示屏“黑屏”
检查处理(参见图3):检查底板电源部分,查N4(UC3844)PWM脉宽调制集成块,测量外接4脚振荡电阻原为7.5Ω,现在变为420kΩ,运行正常。: [0 _0 o. Z B6 {
(7)故障现象:操作控制面板PMU液晶显示屏“黑屏”
检查处理(参见图3):检查底板:主开关电源开关管V34(K2225)栅极限流电阻R133(100Ω和24Ω)电阻烧坏,测量N4(3844)PWM集成块,3脚过流保护外接电阻由正常时的100Ω变为400kΩ,更换后,运行正常。
(8)故障现象:操作控制面板PMU液晶显示屏“黑屏”
检查处理(参见图3、图7、图10):检查底板开关电源,脉宽调制集成块N4,测量第4脚与第8脚振荡电阻由正常时的7.5kΩ变为420kΩ,第6脚输出电阻R133由正常时的100Ω变为300Ω,电压检测部分N1(TL084)第14脚输出外接电阻R203由正常时的47Ω变为544kΩ,触发板输出电阻IGBT第11脚接电阻R226由正常时的9Ω(两支18Ω电阻并联)变为144Ω,第4脚R214由正常时的18.5Ω变为21Ω,第3脚接电阻R126由正常时的9Ω变为18.3Ω,第1脚接电阻R116由正常时的9Ω变为12.6Ω,将上面的电阻重新更换后,运行正常。
图7 电流电压检出板电路
(9)故障现象:操作控制面板PMU液晶显示屏“黑屏”
检查处理(参见图3、图2):检查底板开关电源,开关管V34(K2255)场效应管栅极2000Ω限流电阻烧坏,V28(5C)三极管10kΩ和1.2kΩ基极电阻均烧坏,N3基准电压块MC340的第一脚接1000Ω电阻烧坏,更换新电阻后,运行正常。2 C3 g$ M! K# s5 u& C
(10)故障现象:操作控制面板PMU液晶显示屏“黑屏”
检查处理(参见图3):检查底板开关电源,开关管V34(K2255)和漏极电阻( L, F+ k5 w8 C8 D: B# a, y. @
R400(10Ω)烧坏,其他正常,更换后,插好CUVC板,变频器上电,显示“008”开机封锁,重新初始化,输入参数后,运行正常。
(11)故障现象:操作控制面板PMU液晶显示屏“黑屏”
检查处理(参见图1、图7):检查底板,上电,听到开关电源“咝咝”声音很大,测量各输出点电压,集成块N2的20脚输出电压稍微偏低为14.95V,正常值为15.30V,其他各点输出电压正常。停电,测量电流检测板A1,发现4脚与7脚之间电阻值为2.84Ω,正常值约为3.1kΩ,更换一块电流检测板A1后,变频器上电显示“F029”,测量A1板的1脚与4脚之间的电阻值为无穷大,正常值为25Ω,拆下U相电流变送器T4,测量T4与电流检测板A1的1脚、4脚并接的线圈电阻,阻值为无限大,线圈断路(线圈的正常阻值为25Ω)。更换新的电流变送器T4后,变频器上电,运行正常。; z8 Z8 d+ x5 \* ~
(12)故障现象:操作控制面板PMU液晶显示屏“黑屏”6 @' t, r4 m- h: B3 b
检查处理(参见图8、图7):检查,上电,自检完成后,内部继电器K3吸一下就跳,连接X9的7点与9点闭合一下马上断开(K3的常开点外接主电路接触器线圈)测量各点输出电压正常,断电测量电流检测板A1的第4脚与第6脚之间的电阻值为2140Ω,正常电阻值为3200Ω,更换电流检测板后,运行正常。
图8 X239端子和继电器K3的相关电路
(13)故障现象:操作控制面板PMU液晶显示屏“黑屏”
检查处理(参见图9):检查底板、二次电源,逆变开关管V2(IRF520)场效应管,栅极限流电阻由原正常阻值10Ω变为590kΩ,拆下测量为11MΩ,更换后,运行正常。
"
图9 触发电源板电路
2.3 西门子变频器的操作控制面板PMU液晶显示屏上显示“008”,开机封锁
- ^- |2 c8 b6 n3 m 变频器起动自检完毕,出现开机封锁“008”报警,008是启动封锁,一般,故障复位以后,要将“使能”、“ON/OFF1”置0,如果仍然在008状态,要检查系统的
“OFF2”是不是置0了;或者硬件的“紧急停车”端子开路了;或者功率定义错了(例如功率定义应为43,结果定义成36);最后检查比较状态字1,位6的状态字有没有问题,如果状态字正常,应检查变频器电路板。
(1)故障现象:操作控制面板PMU液晶显示屏显示“008”
检查处理(参见图10):检查触发板A21集成块,9脚外接7.5kΩ电阻,变值为298kΩ。更换新电阻后,运行正常。
(2)故障现象:操作控制面板PMU液晶显示屏显示“008”开机封锁不能复位。!
检查处理(参见图8、图5):将变频器重新初始化,输入参数,显示“009”开机准备状态。变频器带负载上电,加入给定频率,输出正常。5min后,K3继电器带外接主接触器出现断续的掉电声,停电检查变频器,更换一块新CUVC板,开机后变频器故障依旧,停电检查变频器主板,检测到N5(MC33167T)集成块时,电源发出“咝咝”声,断电,用万用表电阻挡检查,发现接1脚100KΩ电阻烧坏。底板控制K3继电器三极管V12基极电阻变值为4kΩ,正常值应为2.2kΩ。更换损坏的贴片电阻后,运行正常。
(3)西门子6SE7023-4TC61-E变频器操作控制面板PMU显示屏显示“OO8”故障维修
检查处理(参见图2、图1、图5):检查底板电源N3正常,N2第20脚输出电压14.50V,稍微偏低,正常值为15.30V,N5第二脚电压为5.6V,测量使电源发出“咝咝”响声,查为第1脚处外接100KΩ电阻、CUVC板连接器X239A第20脚接3.3KΩ电阻烧坏,更换后,变频器上电,显示“009”,启动后,正常。" q' h% R8 F- d
2.4 西门子6SE7021-OTA61-Z变频器的操作控制面板PMU液晶显示屏上显示“F008”报警9 ^*
(1)故障现象:操作控制面板PMU液晶显示屏显示“F008”,复位后显示“009”开机准备,变频器起动,加入给定频率20s后,显示“F008”报警1 w( W' f1 P 检查处理(参见图7):检查变频器电压、电流检测集成块N1(TL084)接3脚的电阻R209由4.7Ω变值为888kΩ,接14脚电阻R203由4.7Ω变值为185kΩ。更换新电阻后,正常。
2)故障现象:上电自检完后,变频器操作控制面板PMU显示屏显示“FOO8”,复位后显示“OO9”,但不能启动。
检查处理(参见图10):检查触发电路检测部分三极管V17(5C)集电极电阻R152,阻值为1.69kΩ,正常时的电阻值应为1.275kΩ(4只5.1KΩ贴片电阻并联),其中一只电阻烧坏,更换一只新电阻后,正常。5
图10 触发板电路图
(3)故障现象:上电自检完后,变频器操作控制面板PMU显示屏显示“FOO8”,复位后显示“OO9”,启动后给定频率,20s后跳闸,显示“FOO8”。
8 y7 C& Y+ _! C, P 检查处理(参见图7):检查电流电压的检测部分运算放大器N1(TL084)集成块第7脚的输出外接电阻R209,电阻值由正常时的47Ω变为888kΩ,第14脚输出外接电阻R203,电阻值由正常值47Ω变为185kΩ,更换新电阻后,正常。
(4)故障现象:操作控制面板PMU显示屏显示“F008”报警,变频器上电自检,显示“009”开机准备状态,但是随后显示“F008”不能启动。: j
检查处理(参见图7):检查底板电压、电流检测部分,发现R56在线测量阻值为4.3kΩ,正常值为900Ω,用热风枪拆下测量阻值为1MΩ,已经烧坏。更换新电阻值后,运行正常。)
2.5 西门子6SE70系列变频器的操作控制面板PMU液晶显示屏上显示“F011”,报警
(1)故障现象:操作控制面板PMU液晶显示屏显示“F011”报警,不能复位-
检查处理(参见图7):电压检测块N1(TL084)7脚外接47Ω电阻变为15Ω,V2(IRF520)G极保护电阻由正常阻值10Ω变为340kΩ,更换后,运行正常。8
(2)故障现象:操作控制面板PMU液晶显示屏显示“F011”报警,且变频器有焦糊味。
检查处理(参见图1、图5、图10):测量N2第20脚输出电压只有5.1V,1脚输出电压为16.5V,检查发现N2第9脚接1kΩ电阻烧坏,N5第1脚接100KΩ电阻变为20MΩ,3脚外接10Ω电阻变为2MΩ,触发板A22第3脚与第4脚接4.7KΩ电阻烧坏,更换上述电阻后,运行正常。5
2.6 6SE7022-6TA61-E 变频器上电初始运行正常,10s后就跳闸,显示“F006”, e/ j% ~8 b0 Z/ l3 c) y
检查处理(参见图10):检查变频器底板,测量各点电压正常,未发现问题,后来将IGBT模块、触发电路板A21、三极管V17(5C)、各个管脚重新焊接后,运行正常。
3 结束语 5 ^,
在西门子6SE70变频器的常见维修中,由于其电路板上选用的大都是贴片电阻、电容、贴片二极管、三极管、IC芯片,因受电路板体积所限,所选用元器件体积及功率都很小,因受周围环境温度的影响导致电路板散热不太好,引起的故障所占比例较大。
再加上化纤行业粘胶短纤维生产现场含硫化氢腐蚀性气体,电气控制室为了减少腐蚀性气体的侵入采用封闭式的,因通风效果不好,导致电气控制室内温度升高,这也是6SE70变频器电路板小功率器件损坏的一个因素。
为了解决以上问题,我公司专门上了一套空调系统,用正压新鲜风来改善环境条件。为了减少硫化氢腐蚀性气体对电路板上元器件的腐蚀,我们还采用电子线路板用喷涂胶,对变频器电路板表面作防腐涂层处理,有效地降低了变频器的故障率,提高了使用效率。/
在日常维护时,一方面应注意检查电网电压,改善变频器、电机及线路的周边环境,定期清除变频器内部灰尘,通过加强设备管理最大限度地降低变频器的故障率。另一方面应注意在维修过程中尽量减少静电的危害,较高的静电电压可能对电子元件造成损坏,在更换电路板及元器件时,应该佩戴防静电接地环和防静电腕带,没有条件时可以将防静电接地线缠绕于腕上。
变频器的维修工作是一项理论知识、实践经验与操作水平的结合,它的技术水平代表着变频器的维修质量。所以我们要经常阅读一些有关的书报杂志,不断了解这些电子元器件所具备的功能和特点,开拓我们的思路,给我们维修工作以启迪,并将这些学到的知识应用于实际工作中,解决一些维修过程中无法解决的问题,使我们的技术水平不断提高。
ABB600变频器过流故障维修变频器出现“OVERCURRENT”故障,分析其产生的原因,从两方面来考虑:
一是外部原因;二是变频器本身的原因。
一、外部原因:
1.电机负载突变,引起的冲击过大造成过流。
2.电机和电机电缆相间或每相对地的绝缘破坏,造成匝间或相间对地短路,因而导致过流
3.过流故障与电机的漏抗,电机电缆的耦合电抗有关,所以选择电机电缆一定按照要求去选。
4.在变频器输出侧有功率因数矫正电容或浪涌吸收装置。
5.当装有测速编码器时,速度反馈信号丢失或非正常时,也会引起过流,检查编码器和其电缆。 二、变频器本身的原因:
1.参数设定问题:
例如加速时间太短,PID调节器的比例P、积分时间I参数不合理,超调过大,造成变频器输出电流振荡。
2.变频器硬件问题:
a)电流互感器损坏,其现象表现为,变频器主回路送电,当变频器未起动时,有电流显示且电流在变化,这样可判断互感器已损坏。
b)主电路接口板电流、电压检测通道被损坏,也会出现过流。
电路板损坏可能是:
1)由于环境太差,导电性固体颗粒附着在电路板上,造成静电损坏。或者有腐蚀性气体,使电路被腐蚀。
2)电路板的零电位与机壳连在一起,由于柜体与地角焊接时,强大的电弧,会影响电路板的性能。
3)由于接地不良,电路板的零伏受干扰,也会造成电路板损坏。
c)由于连接插件不紧、不牢。例如电流或电压反馈信号线接触不良,会出现过流故障时有时无的现象。
d)当负载不稳定时,建议使用DTC模式,因为DTC控制速度非常快,每隔25微秒产生一组精确的转矩和磁通的实际值,再经过电机转矩比较器和磁通比较器的输出,优化脉冲选择器决定逆变器的最佳开关位置,这样有利用抑制过电流。
另外,速度环的自适应(AUTOTUNE)会自动调整PID参数,从而使变频器输出电机电流平稳。
电磁流量计(以下简称EMF)是利用法拉第电磁感应定律制成的一种测量导电液体体积流量的仪表。50年代初EMF实现了工业化应用,近年来世界范围EMF产量约占工业流量仪表台数的5%~6.5%。 70年代以来出现键控低频矩形波激磁方式,逐渐替代早期应用的工频交流激磁方式,仪表性能有了很大提高,得到更为广泛的应用。
2. 原理与机构
EMF的基本原理是法拉第电磁感应定律,即导体在磁场中切割磁力线运动时在其两端产生感应电动势。如图1所示,导电性液体在垂直于磁场的非磁性测量管内流动,与流动方向垂直的方向上产生与流量成比例的感应电势,电动势的方向按“弗来明右手规则”,其值如下式 式中 E-----感应电动势,即流量信号,V; k-----系数; B-----磁感应强度,T; D----测量管内径,m; --- 平均流速,m/s。 设液体的体积流量为,则 式中 K 为仪表常数,K= 4 KB/πD 。 EMF由流量传感器和转换器两大部分组成。传感器典型结构示意如图2,测量管上下装有激磁线圈,通激磁电流后产生磁场穿过测量管,一对电极装在测量管内壁与液体相接触,引出感应电势,送到转换器。激磁电流则由转换器提供。
3、 优 点
EMF的测量通道是一段无阻流检测件的光滑直管,因不易阻塞适用于测量含有固体颗粒或纤维的液固二相流体,如纸浆、煤水浆、矿浆、泥浆和污水等。 EMF不产生因检测流量所形成的压力损失,仪表的阻力仅是同一长度管道的沿程阻力,节能效果显著,对于要求低阻力损失的大管径供水管道最为适合。 EMF所测得的体积流量,实际上不受流体密度、粘度、温度、压力和电导率(只要在某阈值以上)变化明显的影响。 与其他大部分流量仪表相比,前置直管段要求较低。 EMF测量范围度大,通常为20:1~50:1,可选流量范围宽。满度值液体流速可在0.5~10m/s内选定。有些型号仪表可在现场根据需要扩大和缩小流量(例如设有4位数电位器设定仪表常数)不必取下作离线实流标定。 EMF的口径范围比其他品种流量仪表宽,从几毫米到3m。可测正反双向流量,也可测脉动流量,只要脉动频率低于激磁频率很多。仪表输出本质上是线性的。 易于选择与流体接触件的材料品种,可应用于腐蚀性流体。
4、 缺 点
EMF不能测量电导率很低的液体,如石油制品和有机溶剂等。不能测量气体、蒸汽和含有较多较大气泡的液体。 通用型EMF由于衬里材料和电气绝缘材料限制,不能用于较高温度的液体;有些型号仪表用于过低于室温的液体,因测量管外凝露(或霜)而破坏绝缘。
5、 分 类
市场上通用型产品和特殊型仪表可以从不同角度分类。 如按激磁电流方式划分,有直流激磁、交流(工频或其他频率)激磁、低频矩形波激磁和双频矩形波激磁。几种激磁方式的波形见图3。 按输出信号连线和激磁(或电源)连线的制式分类,有四线制和二线制。 按转换器与传感器组装方式分类,有分离型和一体型。 按流量传感器与管道连接方法分类,有法兰连接、法兰夹装连接、卫生型连接和螺纹连接。 按流量传感器电极是否与被测液体接触分类,有接触型和非接触型。按流量传感器结构分类,有短管型和插入型。 按用途分类,有通用型、防爆型、卫生型、防侵水型和潜水型等。
6. 选用考虑要点
6.1 应用概况
EMF应用领域广泛。大口径仪表较多应用于给排水工程。中小口径常用于固液双相等难测流体或高要求场所,如测量造纸工业纸浆液和黑液、有色冶金业的矿浆、选煤厂的煤浆、化学工业的强腐蚀液以及钢铁工业高炉风口冷却水控制和监漏,长距离管道煤的水力输送的流量测量和控制。小口径、微小口径常用于医药工业、食品工业、生物工程等有卫生要求的场所。
6.2精度等级和功能
市场上通用型EMF的性能有较大差别,有些精度高、功能多,有些精度低、功能简单。精度高的仪表基本误差为(±0.5%~±1%)R,精度低的仪表则为(±1.5%~±2.5%)FS,两者价格相差1~2倍。因此测量精度要求不很高的场所(例如非贸易核算仅以控制为目的,只要求高可靠性和优良重复性的场所)选用高精度仪表在经济上是不合算的。 有些型号仪表声称有更高的精确度,基本误差仅(±0.2%~±0.3%)R,但有严格的安装要求和参比条件,例如环境温度20~22℃,前后置直管段长度要求分别大于10D,3D(通常为5D,2D)甚至提出流量传感器要与前后置直管组成一体在流量标准装置上作实流校准,以减少夹装不善的影响。因此在多种型号选择比较时不要单纯只看高指标,要详细阅读制造厂样本或说明书做综合分析。 市场上EMF的功能差别也很大,简单的就只是测量单向流量,只输出模拟信号带动后位仪表;多功能仪表有测双向流、量程切换、上下限流量报警、空管和电源切断报警、小信号切除、流量显示和总量计算、自动核对和故障自诊断、与上位机通信和运动组态等。有些型号仪表的串行数字通信功能可选多种通信接口和专用芯片(ASIC),以连接HART协议系统、PROFTBUS、Modbus、CONFIG、FF现场总线等。
6.3流速、满度流量、范围度和口径
选定仪表口径不一定与管径相同,应视流量而定。流程工业输送水等粘度不同的液体,管道流速一般是经济流速1.5~3m/s。EMF用在这样的管道上,传感器口径与管径相同即可。 EMF满度流量时液体流速可在1~10m/s范围内选用,范围是比较宽的。上限流速在原理上是不受限制的,然而通常建议不超过5m/s,除非衬里材料能承受液流冲刷,实际应用很少超过7m/s,超过10m/s则更为罕见。满度流量的流速下限一般为1m/s,有些型号仪表则为0.5m/s。有些新建工程运行初期流量偏低或在流速偏低的管系,从测量精度角度考虑,仪表口径应改用小于管径,以异径管连接之。用于有易粘附、沉积、结垢等物质的流体,选用流速不低于2m/s,最好提高到3~4m/s或以上,起到自清扫、防止粘附沉积等作用。用于矿浆等磨耗性强的流体,常用流速应低于2~3m/s ,以降低对衬里和电极的磨损。 在测量接近阈值的低电导液体,尽可能选定较低流速(小于0.5~1m/s),因流速提高流动噪声会增加,而出现输出晃动现象。 EMF的范围度是比较大的,通常不低于20,带有量程自动切换功能的仪表,可超过50~100。国内可以提供的定型产品的口径从10mm到3000mm,随然实际应用还是以中小口径居多,但与大部分其他原理流量仪表(如容积式、涡轮式、涡街式或科里奥利质量式等)相比,大口径仪表占有较大比重。某企业近万台仪表中,50mm以下小口径、65~250mm中口径、300~900mm大口径、1000mm以上超大口径分别占37%、45%、15%和3%。
6.4液体电导率
- 电话:13918864473
- 传真:021-61318625
- email:937926739@qq.com
下一篇:交流电流表,迅鹏SPC-96BA
手机扫描二维码分享本页
工控宝APP下载安装
工控速派APP下载安装
评价: | 一般 | ||