供求合作

当前页面: 首页 >供求信息 >A12B12STS

A12B12STS

2016/8/1 8:03:23

0 人气:2

  • 型号:A12B12STS

  • 数量:1000

  • 制造商:上海曦龙电气设备有限公司

  • 有效期:2017/8/1 0:00:00

描述:

A12B12STS




工业风扇代理销售:

联系人:程先生

手机:139188-64473

手机:139188-64473

 QQ:937926739  

固话:021-6131-6707

固话:021-6131-8625

   与众多孤岛离网型微网不同,这一项目实现了自发自用,余电上网。2014年6月,金风科技宣布,旗下子公司北京金风科创风电设备有限公司,与北京市电力公司亦庄供电公司签订“分布式电源”并网售电协议,该智能微网示范项目实现上网售电。

   “园区年负荷电量500万度,其中常规发电340万度,微网发电160万度,微网能够提供园区32%的用电量。”谷延辉告诉界面新闻记者。

风机制造龙头金风科技提前布局智能微

   作为可再生能源并网的一种重要方式,微网是智能电网的重要组成部分,能提高可再生能源的利用效率,使智能电网限度发挥潜能。尤其在岛屿、偏远山区、旅游区、大型工业园区等,合通过储能和微网控制技术,提高可再生能源的供应比例,以实现效益。

   但需要面对现实的是,智能微网的推广尚处于初期的起步阶段。据界面新闻记者了解,在国内已有的智能微网的示范项目中,离网型微网占据大比例,因为离网型微网大都在孤岛和偏远山区,属于政府主导型项目。

   国家电网公司一位不愿具名的人士对界面新闻记者表示,微电网在中国短期内难以实现商业化大规模,原因在于系统技术还未成熟化、包括储能在内等方面的成本还处于较高水平。

   一家储能企业的负责人则向界面新闻记者指出,随着储能等技术的提高,微网的成本将会大幅下降,但国内想要实现智能微网的商业化,市场机制和环境非常重要。

   “与国外相比,国内电力市场缺少自由性,且尚未出台对微电网的补贴机制、电价激励政策,市场投资不足,这些都制约了其发展。”他说。


图2 报文格式图


(三)控制的实现


我们为系统操作员在主站端设计了两种控制方式,第1种为手动遥控:在后台的图形界面中,点击进入相应的变电站,再进入路灯和景观灯所在的控制界面,界面中每一组路灯对应变电站的一个低压抽屉柜,操作员用鼠标选择路灯和景观灯的“开”、“灭”状态,再将所有的开灭状态组成字节数据,用CDT报文下发给变电站的 RTU。RTU收到路灯控制命令后,将报文解析和重组,用MEWTOCOL2COM通信协议将控制数据传送给PLC。PLC将按照系统操作员在后台的设置执行控制命令,RTU将控制结果及时反馈给主站端,主站端将这一控制过程作为一条记录存入数据库,可以事后查询。第2种控制方式为时控:操作员用鼠标选择在××年××月××日××时××分或星期几时的路灯和景观灯的/开0、/灭0状态,将这些数据存入数据库,当设定时间到达时系统自动发出这些数据,系统可以根据RTU的反馈信息确定控制是否成功,并可决定是否重发。


因为对PLC的控制是在子站RTU完成的,为控制的实时性,我们采用C语言编程实现了对PLC的通信控制,确保PLC中无需编写任何梯形图逻辑。由于系统主站与子站之间的通信是基于十六进制数据的CDT规约,而 MEWTOCOL2COM通信协议是基于ASCII码的数据通信,为此设计了两个函数用于基于ASCII字符数据的发送和接收。其中发送数据函数 Sio_putb(),其使用格式见Read_fp1_input()程序。另一个数据接收中断处理处理函数为本设计的关键,为方便和可靠,本文设计的中断触发信号为“串行口收到回车符(十六进制的0dH)”,确保PLC每应答完一帧完整的报文,RTU才进入中断处理,并在中断处理程序中完成报文数据的分析,大大提高了快速性和可靠性。这种方法在基于ASCII字符的通信中极为有效。本文RTU有6个串口,串口1为与主站的全双工通信通道,串口6为与 PLC通信通道,用sio_term_irq(p[6],TermCome,0x0d);函数指明串口6只有收到回车符(0x0d)才响应中断 voidinterruptTerm2Come(),其他的为变电站内的微机保护监控装置、发电机、直流电源屏、变压器通信通道,本文不做赘述。其中断函数初始化及中断处理程序参见文献。


三、结语


利用串行通信实现对PLC的远程控制,可以方便在主站后台端改变对底端设备的控制逻辑和运行方式,PLC中无需编写任何梯形图程序,这在设备远程控制中有重要意义。该项目2004年在厦门海沧大桥多个变电站正式投运,达到了设计要求,实现了全桥低压设备的远方控制.

随着工业设备自动化控制技术的发展,可编程控制器(PLC)在工业设备控制中的应用越来越广泛。PLC控制系统的可靠性直接影响到企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。本文详细介绍了影响PLC运行的干扰类型及来源,并提出抗干扰设计的实施策略。



   自动化系统所使用的各种类型PLC中,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力,另一方面要求应用部门在工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。


   电磁干扰类型及其影响


   影响PLC控制系统的干扰源与一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是干扰源。


   干扰类型通常按干扰产生的原因、噪声干扰模式和噪声波形性质来划分。按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,可分为持续噪声、偶发噪声等;按噪声干扰模式不同,分为共模干扰和差模干扰。


   共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。共模电压有时较大,特别是采用隔离性能差的配电器供电时,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成差模电压,影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流、亦可为交流。差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的,这种干扰叠加在信号上,直接影响测量与控制精度。

   电磁干扰的主要来源


   1.来自空间的辐射干扰。空间辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布极为复杂。若PLC系统置于其射频场内,就会受到辐射干扰,其影响主要通过两条路径:一是直接对PLC内部的辐射,由电路感应产生干扰;二是对PLC通信网络的辐射,由通信线路感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小特别是频率有关,一般通过设置屏蔽电缆和PLC局部屏蔽及高压泄放元件进行保护


   2.来自系统外引线的干扰。主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较为严重,主要有下面三类:


   第一类是来自电源的干扰。实践证明,因电源引入的干扰造成PLC控制系统故障的情况很多,笔者在某工程调试中遇到过,后更换隔离性能更高的PLC电源问题才得到解决。


   PLC系统的正常供电电源均由电网供电,由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压和电流,尤其是电网内部的变化、开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。PLC电源通常采用隔离电源,但因其机构及制造工艺等因素使其隔离性并不理想。实际上,由于分布参数特别是分布电容的存在,绝对隔离是不可能的。


   第二类是来自信号线引入的干扰。与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这种往往非常严重。


   由信号引入的干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。PLC控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。


   第三类是来自接地系统混乱的干扰。接地是提高电子设备电磁兼容性(EMC)的有效手段之一,正确的接地既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地反而会引入严重的干扰信号,使PLC系统无法正常工作。 PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等,接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层。当发生异常状态如雷击时,地线电流将更大。


   此外,屏蔽层、接地线和大地可能构成闭合环路,在变化磁场的作用下,屏蔽层内会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。


   3.来自PLC系统内部的干扰。主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射、模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。这都属于PLC制造厂家对系统内部进行电磁兼容设计的内容,比较复杂,作为应用部门无法改变,可不必过多考虑,但要选择具有较多应用实绩或经过考验的系统。


   抗干扰设计


   为了保证系统在工业电磁环境中免受或减少内外电磁干扰,必须从设计阶段开始便采取三个方面抑制措施:抑制干扰源、切断或衰减电磁干扰的传播途径、提高装置和系统的抗干扰能力。这三点就是抑制电磁干扰的基本原则。


   PLC控制系统的抗干扰是一个系统工程,要求制造单位设计生产出具有较强抗干扰能力的产品,且有赖于使用部门在工程设计、安装施工和运行维护中予以全面考虑,并结合具体情况进行综合设计,才能保证系统的电磁兼容性和运行可靠性。进行具体工程的抗干扰设计时,应主要注意以下两个方面。


   1.设备选型。


   在选择设备时,首先要选择有较高抗干扰能力的产品,其包括了电磁兼容性,尤其是抗外部干扰能力,如采用浮地技术、隔离性能好的PLC系统;其次还应了解生产厂家给出的抗干扰指标,如共模抑制比、差模抑制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作等;另外是靠考查其在类似工作中的应用实绩。


   在选择国外进口产品要注意,我国是采用220V高内阻电网制式,而欧美地区是110V低内阻电网。由于我国电网内阻大,零点电位漂移大,地电位变化大,工业企业现场的电磁干扰至少要比欧美地区高4倍以上,对系统抗干扰性能要求更高。在国外能正常工作的PLC产品在国内工业就不一定能可靠运行,这就要在采用国外产品时,按我国的标准(GB/T13926)合理选择。


   2.综合抗干扰设计。主要考虑来自系统外部的几种抑制措施,内容包括:对PLC系统及外引线进行屏蔽以防空间辐射电磁干扰;对外引线进行隔离、滤波,特别是动力电缆应分层布置,以防通过外引线引入传导电磁干扰;正确设计接地点和接地装置,完善接地系统。另外还必须利用软件手段,进一步提高系统的安全可靠性。


   主要抗干扰措施


联系方式:
  • 电话:13918864473
  • 传真:021-61318625
  • email:937926739@qq.com

手机扫描二维码分享本页

工控宝APP下载安装

工控速派APP下载安装

 

我来评价

评价:
一般