供求合作

当前页面: 首页 >供求信息 >EFB1312SHE

EFB1312SHE

供稿:ddssaaa 2016/6/22 8:08:48

0 人气:4

  • 型号:EFB1312SHE

  • 数量:2365

  • 制造商:上海曦龙电气设备有限公司

  • 有效期:2017/6/22 0:00:00

描述:

EFB1312SHE EFB1312SHE EFB1312SHE


工业风扇代理销售:

联系人:程经理

手机:139188-64473

手机:139188-64473

 QQ:937926739  

固话:021-6131-6707

固话:021-6131-8625

   从主要领域需求结构预测一般通风换气风机(一般为中小型离心和轴流通风机)使用最广泛,需求量最多,制造厂商也最多。总体讲,这类产品供大于求。特殊用途风机(包括防腐风机、高温风机、耐磨风机、消防排烟风机等)需求量虽然不很大,但因作业环境特殊,需要区别对待,因为主要材质要求较特殊。罗茨鼓风机的 特点是当压力在允许范围内调节时,流量变化甚微,压力选择范围宽,具有强制输气特征,主要缺点是噪声较大。通过引进技术、合资及自行开发等,我国已推出噪声较低的三叶罗茨鼓风机,颇受用户欢迎,市场前景较好。透平压缩机(包括离心压缩机、轴流压缩机和轴流-离心复合式压缩机)是重大工程成套装置重要设备,在国民经济中起着重要作用。 对透平压缩机的性能要求既要压力高,又要流量大。随着成套装置大型化,要求透平压缩机参数越来越高。如高炉冶炼装置、大型煤化工装置、大型化肥装置、大型乙烯装置、大型空分装置、天然气管线输送装置及油田注气装置等。这类产品需求量占风机总量很少,但由于重要,以及结构复杂,制造周期长,技术含量高,因此,有比较好的经济效益和社会效益。透平压缩机制造水平代表了风机行业整体水平。

不中断,可采用在线式不间断供电电源(UPS)供电,提高供电的安全可靠性。而且UPS还具有较强的干扰隔离性能,是一种PLC控制系统的理想电源。


   2.正确选择电缆的和实施敷设。


   为了减少动力电缆尤其是变频装置馈电电缆的辐射电磁干扰,笔者在某工程中采用了铜带铠装屏蔽电力电缆,降低了动力线产生的电磁干扰,该工程投产后取得了满意的效果。


   不同类型的信号分别由不同电缆传输,信号电缆应按传输信号种类分层敷设,严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠近平行敷设,以减少电磁干扰。


   3.硬件滤波及软件抗干扰措施。


   信号在接入计算机前,在信号线与地间并接电容,以减少共模干扰;在信号两极间加装滤波器可减少差模干扰。


   由于电磁干扰的复杂性,要根本消除干扰影响是不可能的,因此在PLC控制系统的软件设计和组态时,还应在软件方面进行抗干扰处理,进一步提高系统的可靠性。常用的一些提高软件结构可靠性的措施包括:数字滤波和工频整形采样,可有效消除周期性干扰;定时校正参考点电位,并采用动态零点,可防止电位漂移;采用信息冗余技术,设计相应的软件标志位;采用间接跳转,设置软件保护等。


   4.正确选择接地点,完善接地系统。


   接地的目的通常有两个,一为了安全,二是为了抑制干扰。完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。


   系统接地有浮地、直接接地和电容接地三种方式。对PLC控制系统而言,它属高速低电平控制装置,应采用直接接地方式。由于信号电缆分布电容和输入装置滤波等的影响,装置之间的信号交换频率一般都低于1MHz,所以PLC控制系统接地线采用一点接地和串联一点接地方式。集中布置的PLC系统适于并联一点接地方式,各装置的柜体中心接地点以单独的接地线引向接地极。如果装置间距较大,应采用串联一点接地方式,用一根大截面铜母线(或绝缘电缆)连接各装置的柜体中心接地点,然后将接地母线直接连接接地极。接地线采用截面大于22mm2的铜导线,总母线使用截面大于60mm2的铜排。接地极的接地电阻小于2Ω,接地极最好埋在距建筑物10~15m远处,而且PLC系统接地点必须与强电设备接地点相距10m以上。


   信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地。多个测点信号的屏蔽双绞线与多芯对绞总屏蔽电缆连接时,各屏蔽层应相互连接好,并经绝缘处理,选择适当的接地处单点接地。


   本文小结


   PLC控制系统的干扰是一个十分复杂的问题,因此在抗干扰设计中应综合考虑各方面的因素,合理有效地抑制干扰,对有些干扰情况还需做具体分析,采取对症下药的方法,才能够使PLC控制系统正常工作,保证工业设备安全高效运行。


软起动器是一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。它的主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。

  运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。

  软起动器和变频器是两种完全不同用途的产品。变频器是用于需要调速的地方,其输出不但改变电压而且同时改变频率;软起动器实际上是个调压器,用于电机起动时,输出只改变电压并没有改变频率。变频器具备所有软起动器功能,但它的价格比软起动器贵得多,结构也复杂得多。

  运用串接于电源与被控电机之间的软起动器,控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压,即为软起动,在软起动过程中,电机起动转矩逐渐增加,转速也逐渐增加。软起动一般有下面几种起动方式。

(1)          斜坡升压软起动。这种起动方式最简单,不具备电流闭环控制,仅调整晶闸管导通角,使之与时间成一定函数关系增加。其缺点是,由于不限流,在电机起动过程中,有时要产生较大的冲击电流使晶闸管损坏,对电网影响较大,实际很少应用。

(2)          斜坡恒流软起动。这种起动方式是在电动机起动的初始阶段起动电流逐渐增加,当电流达到预先所设定的值后保持恒定(t1至t2阶段),直至起动完毕。起动过程中,电流上升变化的速率是可以根据电动机负载调整设定。电流上升速率大,则起动转矩大,起动时间短。

    该起动方式是应用最多的起动方式,尤其适用于风机、泵类负载的起动。

(3)          阶跃起动。开机,即以最短时间,使起动电流迅速达到设定值,即为阶跃起动。通过调节起动电流设定值,可以达到快速起动效果。

(4)          脉冲冲击起动。在起动开始阶段,让晶闸管在级短时间内,以较大电流导通一段时间后回落,再按原设定值线性上升,连入恒流起动。

  该起动方法,在一般负载中较少应用,适用于重载并需克服较大静摩擦的起动场合。

笼型电机传统的减压起动方式有Y-q 起动、自耦减压起动、电抗器起动等。这些起动方式都属于有级减压起动,存在明显缺点,即起动过程中出现二次冲击电流。软起动与传统减压起动方式的不同之处是:

(1)          无冲击电流。软起动器在起动电机时,通过逐渐增大晶闸管导通角,使电机起动电流从零线性上升至设定值。

(2)          恒流起动。软起动器可以引入电流闭环控制,使电机在起动过程中保持恒流,确保电机平稳起动。

(3)  根据负载情况及电网继电保护特性选择,可自由地无级调整至最佳的起动电流。


电磁兼容性(EMC)是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEE C63.12-1987)。”对于无线收发设备来说,采用非连续频谱可部分实现EMC性能,但是很多有关的例子也表明EMC并不总是能够做到。例如在笔记本电脑和测试设备之间、打印机和台式电脑之间以及蜂窝电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。

EMC问题来源

所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。

EMI有两条途径离开或进入一个电路:辐射和传导。信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。

很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。

对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。

金属屏蔽效率

可用屏蔽效率(SE)对屏蔽罩的适用性进行评估,其单位是分贝,计算公式为

SEdB=A+R+B

其中 A:吸收损耗(dB) R:反射损耗(dB) B:校正因子(dB)(适用于薄屏蔽罩内存在多个反射的情况)

一个简单的屏蔽罩会使所产生的电磁场强度降至最初的十分之一,即SE等于20dB;而有些场合可能会要求将场强降至为最初的十万分之一,即SE要等于100dB。

吸收损耗是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算式为

AdB=1.314(f×σ×μ)1/2×t

其中 f:频率(MHz) μ:铜的导磁率 σ:铜的导电率 t:屏蔽罩厚度

反射损耗(近场)的大小取决于电磁波产生源的性质以及与波源的距离。对于杆状或直线形发射天线而言,离波源越近波阻越高,然后随着与波源距离的增加而下降,但平面波阻则无变化(恒为377)。

相反,如果波源是一个小型线圈,则此时将以磁场为主,离波源越近波阻越低。波阻随着与波源距离的增加而增加,但当距离超过波长的六分之一时,波阻不再变化,恒定在377处。

反射损耗随波阻与屏蔽阻抗的比率变化,因此它不仅取决于波的类型,而且取决于屏蔽罩与波源之间的距离。这种情况适用于小型带屏蔽的设备。

近场反射损耗可按下式计算

R(电)dB=321.8-(20×lg r)-(30×lg f)-[10×lg(μ/σ)] R(磁)dB=14.6+(20×lg r)+(10×lg f)+[10×lg(μ/σ)]

其中 r:波源与屏蔽之间的距离。

SE算式最后一项是校正因子B,其计算公式为

B=20lg[-exp(-2t/σ)]

此式仅适用于近磁场环境并且吸收损耗小于10dB的情况。由于屏蔽物吸收效率不高,其内部的再反射会使穿过屏蔽层另一面的能量增加,所以校正因子是个负数,表示屏蔽效率的下降情况。

EMI抑制策略

只有如金属和铁之类导磁率高的材料才能在极低频率下达到较高屏蔽效率。这些材料的导磁率会随着频率增加而降低,另外如果初始磁场较强也会使导磁率降低,还有就是采用机械方法将屏蔽罩作成规定形状同样会降低导磁率。综上所述,选择用于屏蔽的高导磁性材料非常复杂,通常要向EMI屏蔽材料供应商以及有关咨询机构寻求解决方案。

在高频电场下,采用薄层金属作为外壳或内衬材料可达到良好的屏蔽效果,但条件是屏蔽必须连续,并将敏感部分完全遮盖住,没有缺口或缝隙(形成一个法拉第笼)。然而在实际中要制造一个无接缝及缺口的屏蔽罩是不可能的,由于屏蔽罩要分成多个部分进行制作,因此就会有缝隙需要接合,另外通常还得在屏蔽罩上打孔以便安装与插卡或装配组件的连线。

设计屏蔽罩的困难在于制造过程中不可避免会产生孔隙,而且设备运行过程中还会需要用到这些孔隙。制造、面板连线、通风口、外部监测窗口以及面板安装组件等都需要在屏蔽罩上打孔,从而大大降低了屏蔽性能。尽管沟槽和缝隙不可避免,但在屏蔽设计中对与电路工作频率波长有关的沟槽长度作仔细考虑是很有好处的。

任一频率电磁波的波长为: 波长(λ)=光速(C)/频率(Hz)

当缝隙长度为波长(截止频率)的一半时,RF波开始以20dB/10倍频(1/10截止频率)或6dB/8倍频(1/2截止频率)的速率衰减。通常RF发射频率越高衰减越严重,因为它的波长越短。当涉及到最高频率时,必须要考虑可能会出现的任何谐波,不过实际上只需考虑一次及二次谐波即可。

一旦知道了屏蔽罩内RF辐射的频率及强度,就可计算出屏蔽罩的最大允许缝隙和沟槽。例如如果需要对1GHz(波长为300mm)的辐射衰减26dB,则150mm的缝隙将会开始产生衰减,因此当存在小于150mm的缝隙时,1GHz辐射就会被衰减。所以对1GHz频率来讲,若需要衰减20dB,则缝隙应小于15 mm(150mm的1/10),需要衰减26dB时,缝隙应小于7.5 mm(15mm的1/2以上),需要衰减32dB时,缝隙应小于3.75 mm(7.5mm的1/2以上)。

可采用合适的导电衬垫使缝隙大小限定在规定尺寸内,从而实现这种衰减效果。

屏蔽设计难点

由于接缝会导致屏蔽罩导通率下降,因此屏蔽效率也会降低。要注意低于截止频率的辐射其衰减只取决于缝隙的长度直径比,例如长度直径比为3时可获得100dB的衰减。在需要穿孔时,可利用厚屏蔽罩上面小孔的波导特性;另一种实现较高长度直径比的方法是附加一个小型金属屏蔽物,如一个大小合适的衬垫。上述原理及其在多缝情况下的推广构成多孔屏蔽罩设计基础。

多孔薄型屏蔽层:多孔的例子很多,比如薄金属片上的通风孔等等,当各孔间距较近时设计上必须要仔细考虑。下面是此类情况下屏蔽效率计算公式

SE=[20lg (fc/o/σ)]-10lg n 其中 fc/o:截止频率 n:孔洞数目

注意此公式仅适用于孔间距小于孔直径的情况,也可用于计算金属编织网的相关屏蔽效率。

接缝和接点:电焊、铜焊或锡焊是薄片之间进行永久性固定的常用方式,接合部位金属表面必须清理干净,以使接合处能完全用导电的金属填满。不建议用螺钉或铆钉进行固定,因为紧固件之间接合处的低阻接触状态不容易长久保持。

导电衬垫的作用是减少接缝或接合处的槽、孔或缝隙,使RF辐射不会散发出去。EMI衬垫是一种导电介质,用于填补屏蔽罩内的空隙并提供连续低阻抗接点。通常EMI衬垫可在两个导体之间提供一种灵活的连接,使一个导体上的电流传至另一导体。

封孔EMI衬垫的选用可参照以下性能参数: ·特定频率范围的屏蔽效率 ·安装方法和密封强度 ·与外罩电流兼容性以及对外部环境的抗腐蚀能


联系方式:
  • 电话:13918864473
  • 传真:021-61318625
  • email:937926739@qq.com

手机扫描二维码分享本页

工控网APP下载安装

 

我来评价

评价:
一般