- 型号:AD2524MB
- 数量:1000
- 制造商:上海曦龙电气设备有限公司
- 有效期:2017/8/2 0:00:00
AD2524MB
工业风扇代理销售:
联系人:程先生
手机:139188-64473
手机:139188-64473
QQ:937926739
固话:021-6131-6707
固话:021-6131-8625
屋顶通风机
1.低压离心通风机:风机进口为标准大气条件,通风机全压PtF≤1kPa的离心通风机。
2.中压离心通风机:风机进口为标准大气条件,通风机全压为1kPa<PtF<3kPa的离心通风机。
3.高压离心通风机:风机进口为标准大气条件,通风机全压为3kPa<PtF<15kPa的离心通风机。
4.低压轴流通风机:风机进口为标准大气条件,通风机全压为PtF≤0.5kPa的轴流通风机。
5.高压轴流通风机:风机进口为标准大气条件,通风机全压为0.5kPa<PtF<15kPa的轴流通风机。
比例大小
比转速是指要达到单位流量和压力所需的转速。
低比转速通风机(ns=11~30)2.中比转速通风机(ns=30~60)3.高比转速通风机(ns=60~81)
用途分类
按通风机的用途分类,可分为引风机(Y)、纺织风机(FZ)、消防排烟风机等。通风机的用途一般以汉语拼音字头代表。
5发展趋势
编辑ysdzxcvb201605211
进一步提高通风机的气动效率、装置效率和使用效率,以降低电能消耗;
用动叶可调的轴流通风机代替大型离心通风机;
③降低通风机噪声;
④提高排烟、排尘通风机叶轮和机壳的耐磨性;
⑤实现变转速调节和自动化调节。
防爆屋顶通风机
通风机已有悠久的历史。中国在公元前许多年就已制造出简单的木制砻谷风车,它的作用原理与现代离心通风机基本相同。1862年,英国的圭贝尔发明离心通风机,其叶轮、机壳为同心圆型,机壳用砖制,木制叶轮采用后向直叶片,效率仅为40%左右,主要用于矿山通风。1880年,人们设计出用于矿井排送风的蜗形机壳,和后向弯曲叶片的离心通风机,结构已比较完善了。
1892年法国研制成横流通风机;1898年,爱尔兰人设计出前向叶片的西罗柯式离心通风机,并为各国所广泛采用;19世纪,轴流通风机已应用于矿井通风和冶金工业的鼓风,但其压力仅为100~300帕,效率仅为15~25%,直到二十世纪40年代以后才得到较快的发展。
1935年,德国首先采用轴流等压通风机为锅炉通风和引风;1948年,丹麦制成运行中动叶可调的轴流通风机;旋轴流通风机、子午加速轴流通风机、斜流通风机和横流通风机也都获得了发展。
通风机广泛地应用于各个工业部门,一般讲,离心式通风机适用于小流量、高压力的场所,而轴流式通风机则常用于大流量、低压力的情况。
一、锅炉用通风机
锅炉用通风机根据锅炉的规格可选用离心式或轴流式。又按它的作用分为锅炉通风机—向锅炉内输送空气;锅炉引风机—把锅炉内的烟气抽走。
二、通风换气用通风机
这类通风机一般是供工厂及各种建筑物通风换气及采暖通风用,要求压力不高,但噪声要求要低,可采用离心式或轴流式通风机。
三、工业炉(化铁炉、锻工炉、冶金炉等)用通风机
此种通风机要求压力较高,一般为2940~14700N/m2,即高压离心通风机的范围。因压力高、叶轮圆周速度大,故设计时叶轮要有足够的强度。
四、矿井用通风机
它有两种:一种是主通风机(又称主扇),用来向井下输送新鲜空气,其流量较大,采用轴流式较合适,也有用离心式的;另一种是局部通风机(又称局扇),用于矿井工作面的通风,其流量、压力均小,多采用防爆轴流式通风机。
五、煤粉通风机
输送热电站锅炉燃烧系统的煤粉,多采用离心式风机。煤粉通风机根据用途不同可分两种:一种是储仓式煤粉通风机,它是将储仓内的煤粉由其侧面吹到炉膛内,煤粉不直接通过风机,要求通风机的排气压力高;另一种是直吹式煤粉通风机,它直接把煤粉送给炉膛。由于煤粉对叶轮及体壳磨损严重,故应采用耐磨材料。
编码和码元映射
在确定编码器和信号映射器的逻辑数目时,我们可以借鉴过去标准调制解调器的设计。如V.32中的编码器包括一个提供180度双相保护的差分编码器和一个能加入冗余以减小接收器的位误差率(BER)的卷积编码器。编码器和映射器都是有限状态机实现的,所有状态由五个寄存器(2.5个 CLB)实现,连接逻辑由八个二输入异或门(4个CLB)及三个二输入与门(1.5 CLB)构成。在这个16-QAM发送器中,一个串并转换寄存器(2个CLB)捕获到四个20-Mbps的串行比特后形成一个4比特码元,这样编码器就可以处理降低到每秒5兆码元的数据流,而这种速率CLB很容易处理。数据通道控制需要沿着数据通道的寄存器进行时钟控制,所需CLB的数量少于15个。接着,一个经编码的5比特输出码元对应映射器的地址线,很简单,该映射器是一对3比特输出的LUT。
这些输出作为正交分量(I和Q) 映射一个二维平面(星座)内的码元位置。64个交叉点(星)中仅有16个代表有效的码元位置。映射器的大小为32字 x 3比特 x 2 即6个CLB。这些功能模块的CLB总数是31个。
平方根升余弦滤波器
平方根升余弦滤波器是在传输通道的有限带宽内抑制码元相互干扰的一种可行方法。频谱由发射器和接收器单元分别调制,形成了平方根升余弦滤波器。滤波器形状及其系数用QEDesign 1000软件辅助开发。图2为12比特定点计算的32抽头有限脉冲响应(FIR)滤波器的响应图。我们将采用一个12比特滤波器模型并确定其逻辑门数(采用12比特量化的方式,QEDesign程序仅需28个对称系数,但是这种设计方案将使用一个完全32抽头对称FIR滤波器)。
设计技巧
平方根升余弦滤波器用于I、Q两个通道上的频谱形成。当以每秒5兆采样速率产生I、Q采样点时,滤波器为调制器产生每秒20兆的采样数据。这样,滤波器充当了一个1:4的插值器。相应的计算量(采用对称系数)为2通道 x 16阶对称抽头x每秒20兆采样点 = 每秒640兆乘法-累加运算。这一速度大大超过大多数定点DSP芯片的运行速度。现在FPGA已成为一种很有吸引力的选择,但是,还要挑选一种滤波器形式使之能最有效地映射到基于CLB的设计。
现在有多种逻辑电路的配置或形式可实现FIR滤波器。最主要的有直接形式(即一种常用的软件模型)、带变量的转置形式(已由专用滤波器芯片实现)以及多相滤波器(适用于多速率应用)。但这些形式都不能采用对称系数的方法来减少乘法计算量。设计多速率滤波器的一个技巧是在采样点-系数平面标出信号流轨迹。
纵轴表示采样点,水平轴表示系数,画出的数据轨迹显示了90度翻转后滤波器的响应图。因为系数对称,只需列出一半滤波器系数。插入系数为K,即在输入采样点间填入K-1个零点,从而得到32抽头FIR的V形轨迹。虽然输入数据采样点间隔为200 ns,但新的轨迹点必须每隔50ns一点。
由该图可以得出两种计算模型。第一种是转置形式的变形,其中非零输入采样值与所有32个系数的乘积在部分和寄存器中相加。32个乘积相加后并且滤波器的完全响应输出后,乘法-累加器电路可用于计算新轨迹。在此,每隔200ns进行32次MAC运算。第二种模型是延迟相加,即FIR滤波器的直接形式。正如在滤波器轨迹中所看到的,需要八个存储的采样值计算一个滤波响应。通过计算五个连续滤波器响应我们可观察到表1给出的模型。
由同样的八个采样点输入组可计算出四个连续的20MHz响应。只使用了两组滤波器系数。滤波器系数与每个采样数据组的第三和第四个响应( y d和y e )顺序相反。这些响应方程能映射到有效的FPGA电路中吗?当然能!关键就是应用分布式计算技术,所有现行的设计工具都不具备这种算法。实现响应方程组以前,可先作一下简化。
5 MHz载波
载波调制的简单方程为:Y(k) = yI(k)cos(wC*t) + yQ(k)sin(wC*t),其中wC为载波频率= 2p(5 MHz), I和Q表示同相和正交的码元分量。
此方程每50 ns执行一次。一个码元周期内(200 ns)仅有四个载波值。这些值可以方便地定义为:cos(wC*t) = 1, 0, -1, 0和sin(wC*t)= 0, 1, 0, -1 ,1。
调制输出既不需要任何乘法或加法,也不需要每隔50ns计算一次I、Q滤波器响应。50 ns计算一个I响应接着在下一个50 ns计算一个Q响应,然后再计算I响应、Q响应,周而复始。
分布式计算(DA)技术
DA是专门针对乘积和方程的一种计算技术,方程中的一项乘积因子是常数。DA设计可实现门级高效率、串行位算法及高性能位并行运算,它是经典的串/并综合方案。DA技术可应用于很多重要的线性、时不变数字信号处理算法,如滤波器(FIR和IIR)、变换(快速傅立叶变换[FFT])及矩阵向量乘积,如8 x 8离散余弦变换(DCT)。
二十多年前就有了DA技术,已经证实它不适于可编程DSP的定点指令集结构。然而,DA非常适于FPGA实现,尤其是如Xilinx CLB的LUT逻辑模块。用Xilinx XC3000系列的FPGA设计DA FIR滤波器早在1992年就已提出。
DA电路中没有独立的乘法器。乘法是由LUT完成的。DA预存一个方程式中所有部分乘积项的和,并且根据所有输入变量位查表(此处为DALUT)运算。串行DA电路有一个独立的DALUT,它从最低的有效位开始查表。部分乘积的输出和存储在累加器中,这种方法让我们想起了早期计算机中的移位相加子程序,连续的DALUT输出累加到部分乘积的二进制下移累加和中。这样可得到一个真正的双精度结果。
滤波器的实现
平方根升余弦滤波器的数据通道由已可转换为CLB的标准功能模块定义。每隔200ns将映射器输出的3比特I、Q信号传至并串转换移位寄存器(PSR)。RAM移位寄存器(SR)链中存储了七个先前的码元。前三个滤波器响应Y b , Y c , Y d与移位寄存器中的循环数据一起运算。PSR还需要一个反馈通道,但RAM SR在只读时循环受到模块寻址的影响。这里的模块有六个,前三次移位用于Y b,紧接着的三次用于Y c,最后三次则是用于Y d。在计算Y e时,数据沿SR链下移。这种模块寻址模式随着前级传输(写)的数据不断重复。所有十二次移位和相应的PSR加载、RAMSR寻址及写控制都来源于60MHz系统时钟。
由于相同的系数组要用于两个采样周期,一个用于I通道数据计算,另一个用于Q通道数据计算,用一组DALUT和2/1复用器将串行数据流导向相应的地址端口。这些端口可以表示DALUT的结构。h 3端口的逻辑高电平选择部分乘积和包含h 3的所有内存地址。与此类似,h 7端口的逻辑高电平选择所有包含h 7的所有地址,h 3和h 7端口的逻辑高电平选择所有包含h 3和h 7的地址。剩余的六个系数仍采用这种模式。事实上,八个系数将需要2 8或256个字存储。对于12比特系数的情况,将需要 (每个CLB为256/32 字) x 12 = 96 个CLB。另一个诀窍是使用两个DALUT,每个需要四个系数并增加它们的输出。这样CLB的数目则减少到(2 x 24)/32 x 12 + 13/2 (并行加法器) = 18.5 个CLB.
同样的简化也可用到以h 1开始的第二套滤波器系数中。采用2/1复用器可分时共享并行加法器。该加法器扩展为13个比特后,输入到前述执行移位和加法运算的标量累加器。当输入变量的符号位传输给DALUT时,就进行减运算。此过程可通过在DALUT输出增加EXOR门并向累加器第一级进位的标准方法来完成。对于负响应Y d和Y e,数据采样可不管符号位,而对所有的DALUT输出数据取反来求补。
对于分数二进制补码格式的I、Q数据,滤波器系数要进行调整以防在最后输出中溢出。十个最高有效位可加载到D/A转换驱动寄存器中。
滤波器数据通道的CLB总数为71.5个,FPGA输出端口带有触发器,可作为D/A转换的驱动寄存器。算上编码器(31个CLB)及定时和控制功能(估计要少于50个CLB)在内,总数大约为159个CLB,正好可置于Xilinx XC4000系列中较小(稍大于最小)的芯片中,即XC4005 (196个CLB)。如果采用Xilinx Virtex等更高级的FPGA器件,则可减少CLB的数量并提高性能。
整个设计可确保60MHz系统时钟条件下的性能。数据流采取统一形式且单向传输。可以插入管道寄存器(不增加CLB)以缩短组合路径。通过标量累加器的十四级的进位链是最长的组合路径。然而,通过内置预进位电路可确保足够的速度余量
串行外设都会用到RS232-C异步串行接口,传统上采用专用的集成电路即UART实现,如TI、EXAR、EPIC的550、452等系列,但是我们一般不需要使用完整的UART的功能,而且对于多串口的设备或需要加密通讯的场合使用UART也不是最合适的。如果设计上用到了FPGA/CPLD器件,那么就可以将所需要的UART功能集成到FPGA内部,本人最近在用XILINX的XCS30做一个设计的时候,就使用VHDL将UADT的核心功能集成了,从而使整个设计更加紧凑,更小巧、稳定、可靠,下面就谈谈设计方法。
---- 分析UART的结构,可以看出UART主要由数据总线接口、控制逻辑和状态接口、波特率发生器、发送和接受等部分组成,各部分间关系如图一。
- 电话:13918864473
- 传真:021-61318625
- email:937926739@qq.com
手机扫描二维码分享本页
工控网APP下载安装
评价: | 一般 | ||